

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 2685-2688

Hydroarylation of bicyclic, unsaturated dicarboximides: access to aryl-substituted, bridged perhydroisoindoles

Gökce Göksu^a, Melek Gül^a, Nüket Öcal^{a,*}, Dieter E. Kaufmann^{b,*}

^a Yildiz Technical University, Faculty of Art and Sciences, Davutpasa Campus, 34210 Esenler-Istanbul, Turkey ^b Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany

> Received 11 February 2008; revised 26 February 2008; accepted 29 February 2008 Available online 6 March 2008

Abstract

The C–C coupling of the two bicyclic, unsaturated dicarboximides 6 and 8 with anyl and hetaryl halides gave under reductive Heck conditions the 5-substituted *N*-phenylbicyclo[2.2.1]heptane-2,3-dicarboximides 7 and 9. Reduction of these imides opens a new access to the bridged perhydroisoindole derivatives 12 and 14 with prospective biological activity. © 2008 Elsevier Ltd. All rights reserved.

Keywords: Palladium; Homogenous catalysis; C-C coupling; Reduction; Amine; Aromatics

N-Substituted imides, such as maleimides 1,¹ isohematinic acids 2^2 and especially bicyclic derivatives such as tandospirone 3 derivatives^{3,4} (Fig. 1) are known for their broad spectrum of pharmacological properties, thus showing antibiotic, fungicidal, analgesic, anxiolytic, and cytostatic effects.

Fig. 1. Maleimides 1, isohematinic acids 2 and tandospirone 3.

Derivatives of the *exo-*5,6-dehydronorcantharidin **5** (Fig. 2) are also pharmacologically active.⁵ Norcantharidin shows a comparable activity with cantharidin **4** (Fig. 2) which is the major effective ingredient in pharmaceuticals for the treatment of certain malignant tumors in China. Compound **5** has been widely employed in clinical practice, as it is less toxic and much easier to synthesize.^{6,7} Furthermore, in connection with an additional imide unit this type of structure has recently become a topic in heterocyclic chemistry because of its anti-tumor, anti-virus, analgesic, sedative, and fungicidal activities.⁷

We therefore became interested in the synthesis of bioactive cantharidin analogues that represent aryl-modified bicyclic imide systems, too. We first synthesized *endo-N*phenylbicyclo[2.2.1]hept-5-ene-2,3-dicarboximide **6** from cyclopentadiene and *N*-phenylmaleimide and *exo-N*phenyl-7-oxa-bicyclo[2.2.1]hept-5-ene-2,3-dicarboximide, **8**

Fig. 2. Cantharidin 4 and exo-5,6-dehydronor-cantharidin 5.

^{*} Corresponding authors. Tel.: +90 212 449 17 50; fax: +90 212 449 15 14 (N.Ö.).

E-mail addresses: nocal@yildiz.edu.tr, ocal20002000@yahoo.com (N. Öcal), dieter.kaufmann@tu-clausthal.de (D. E. Kaufmann).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.02.171

from furan and *N*-phenylmaleimide as starting compounds according to the literature.^{8,9}

Kaufmann and co-workers have a long-standing experience in palladium-catalyzed hydroarylation¹⁰ and domino reactions of heterobicyclic and tricyclic systems¹¹ toward bioactive compounds such as epibatidine¹² and analogues,¹³ diazanorbornanes¹⁴ and *N*-aminoimides.¹⁵ In reductive arylation reactions triphenylarsine has proved to be superior to triphenylphosphine and carbenes as ligands in both selectivity and yield.¹²

Treatment of **6** with iodobenzene, 2-iodothiophene, *o*-chloroiodobenzene and *p*-chloroiodobenzene under reductive Heck conditions¹⁶ gave the pure products **7a–d** after chromatographic separation on silica gel as single diastereomers in isolated yields of $51-89\%^{17}$ (Scheme 1). The stereochemistry was inferred from their NMR spectra including diagnostic spin–spin interactions.

The *exo*-position of the C-5 substituent was confirmed by the fact that H₅ showed no significant interaction with H₁ but did show a cross-peak as a result of W-coupling to H_{7-syn}. The geminal protons on C-6 were identified by vicinal coupling to H₁ and W-coupling to H_{3-exo}, respectively. In addition, Table 1 shows selected ¹H NMR data of the hydroarylation products **7a–d**.

The same reductive Heck arylation conditions were successfully applied to the reaction of **8** with iodobenzene, 2-iodothiophene, 4-chloro-1-iodobenzene, 2,4-dichloro-1-iodobenzene, and 2-chloro-5-iodopyridine to give the new *exo*-arylated heterocycles **9a**–**f** in good yields after chromatographic separation¹⁸ (Scheme 2). Again, a characteristic coupling pattern between the bridgehead and the H₅ and H₆ protons appeared in the ¹H NMR spectra. Additionally, H–H COSY spectra showed cross peaks between H₂ and H₃ and between H₅ and H₆, respectively.

In addition to the ¹³C NMR and FTIR spectral data which were in agreement with the proposed structures, the mass spectra of all new compounds showed the expected molecular ion peaks.

A number of structurally related bicyclic amines have proved to be useful in the treatment of physiologically or drug induced psychosis or dyskinesia in mammals.¹⁹ Perhydroisoindoles are selective sigma receptor antagonists, and have a low potential for movement disorder side effects

Table 1

Selected ¹H NMR data for compounds 7a-d

0				
	7a	7b	7c	7d
H _{7a}	1.64–1.67, d	1.68–1.72, d	1.69–1.80, m	1.64–1.67, d
H_{7s}	1.94–1.98, dt	1.95–2.05, m	1.69–1.80, m	1.88–1.91, dt
H_1	3.00-3.08, m	3.02, br s	3.13–3.15, d	2.95–2.97, br d
H_4	3.00-3.08, m	3.02, br s	3.00-3.03, br d	3.00-3.05, m

Fig. 3. Alkyl substituted perhydroisoindoles 10 and 11.

associated with typical antipsychotic agents.^{20,21} Some dialkylaminoalkyl perhydroisoindole derivatives, being similar to **10** and **11**, are also displaying hypotensive activities (Fig. 3). The compounds were prepared by reduction of the corresponding imides.^{22,23} Thus, it also seemed interesting to obtain perhydroisoindoles from new 5,6-dehydronorcantharidin derivatives.

As a part of our continuing study to obtain new perhydroisoindole derivatives, we reduced compounds 7a,b,d using an excess of LiAlH₄ in refluxing diethyl ether. After regular workup the crude product was purified by column chromatography to yield 12a,b,d in 50–60% (Scheme 3).

The structural identification of the new reduced compounds 12a,b,d succeeded.²⁴ In the FTIR spectra the characteristic C=O band (1702–1710 cm⁻¹) of 7a,b,d was absent. NMR and MS/EI spectra were also in agreement with the proposed structures.

Additionally, we tried the reduction of 9a,b by LiAlH₄ under the same reaction conditions. Yields were very low after workup, though, probably due to opening of the oxygen bridge. Therefore, we first reduced precursor 8 at room temperature (2 h), then worked up at 0 °C by dropwise addition of ethyl acetate, and then water. The crude product was purified by column chromatography (SiO₂, hexane/ ethyl acetate 1:2) to yield 13 in 84%. Reductive arylation of 13 with iodobenzene and 2-iodothiophene under Heck conditions gave the pure products 14a,b after chromatographic separation on silica in isolated yields of 50% and 37%, respectively²⁵ (Scheme 4).

In conclusion, in the presence of triphenylarsine as a ligand, the palladium-catalyzed hydroarylation of the easily accessible tricyclic N-phenyl derivatives of the unsaturated imides **6** and **8** has been proven to be a stereoselective, versatile, and high-yield approach for the synthesis of aryl and heteroaryl derivatives. Our results have also demonstrated that the reductive access to aryl-substituted bridged perhydroisoindoles will be useful for the construction of novel heterocycles of potential pharmacological interest.

Acknowledgment

We gratefully acknowledge the financial support of this work by the Yildiz Technical University Scientific Research Projects Coordination Department (Project No. 24-01-02-04).

References and notes

- Zentz, F.; Valla, A.; Le Guillou, R.; Labia, R.; Mathot, A.; Sirot, D. *Il Farmaco* 2002, *57*, 421–442.
- DiPardo, R. M.; Patane, M. A.; Newton, R. C.; Price, R.; Broten, T. P.; Chang, R. S. L.; Ransom, R. W.; Di Salvo, J.; Freidinger, R. M.; Bock, M. G. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 1959–1962.
- 3. Kossakowski, J.; Jarocka, M. Il Farmaco 2001, 56, 785-789.
- Stack, G. P.; Abou-Gharbia, M. A.; Podlesny, E. J. U.S. Patent 4,748,240, American Home Products Corporation NY, 1988; *Chem. Abstr.* 1988, 109, 211085.
- Hart, M. E.; Chamberlin, A. R.; Walkom, C.; Sakoff, J. A.; McCluskey, A. *Bioorg. Med. Chem. Lett* **2004**, *14*, 1969–1973.
- 6. Deng, L.; Yongzhou, H. J. Heterocycl. Chem. 2007, 44, 597-601.
- Deng, L.-P.; Liu, F.-M.; Wang, H.-Y. J. Heterocycl. Chem. 2005, 42, 13–18.

- 8. William, J. B.; William, B. L. J. Am. Chem. Soc. 1957, 79, 1444–1447.
- Anderson, W. K.; Milowsky, A. S. J. Org. Chem. 1985, 50, 5423– 5424.
- Namyslo, J. C.; Kaufmann, D. E. Chem. Ber. Recl. 1997, 130, 1327– 1331.
- Yolacan, C.; Bagdatli, E.; Öcal, N.; Kaufmann, D. E. *Molecules* 2006, 11, 603–614.
- 12. Namyslo, J. C.; Kaufmann, D. E. Synlett 1999, 804-806.
- Otten, A.; Namyslo, J. C.; Stoermer, M.; Kaufmann, D. E. Eur. J. Org. Chem. 1998, 9, 1997–2001.
- Storsberg, J.; Nandakumar, M. V.; Sankaranarayanan, S.; Kaufmann, D. E. Adv. Synth. Catal. 2001, 343, 177–180.
- Bagdatli, E.; Öcal, N.; Kaufmann, D. E. *Helv. Chim. Acta* 2007, 90, 2380–2385.
- 16. Reductive Heck reactions, general procedure: A solution of $Pd(OAc)_2$ (5.6 mg, 0.025 mmol) and AsPh₃ (33.7 mg, 0.11 mmol) in anhydrous DMF or DMSO (3 mL) was stirred under nitrogen at 65 °C for 15 min. Then, compound 6 (239 mg, 1 mmol) or 8 (241 mg, 1 mmol), respectively, Et₃N (488 µL, 3.5 mmol), aryl(heteroaryl) iodide (1.5 mmol) and HCOOH (138 mg, 3 mmol) were added. The reaction mixture was stirred for 8–24 h. After cooling to room temperature EtOAc and brine were added, the organic layer was separated, dried (MgSO₄), filtered, and the solvent evaporated. The residue was purified by column chromatography (SiO₂).
- 17. Compound (7a): Colorless crystals, mp 125-8 °C (89% from hexane/ ethyl acetate (3:2)), ¹H NMR (400 MHz, CDCl₃ δ: 1.64–1.67 (d, J = 13.2 Hz, 1H, H_{7a}); 1.94–1.98 (dt, J = 1.5; 10.4 Hz, 1H, H_{7s}); 2.01– 2.04 (m, 2H, H_{6x} and H_{6n}); 3.00-3.08 (m, 3H, H_{5n}, H₁ and H₄); 3.32- $3.36 (dd, J = 5.01; 9.65 Hz, 1H, H_2); 3.38-3.42 (dd, J = 5.01; 9.65 Hz, 1H, H_2); 3.42 (dd, J = 5.01; 9.65 Hz, 1H, H_2); 3.42 (dd, J = 5.01; 9.65 Hz, 1H, H_2); 3.42 (dd, J = 5.01; 9.65 Hz, 1H, H_2); 3.42 (dd, J = 5.01; 9.65 Hz, 1H, H_2); 3.42 (dd, H_2); 3.42 (dd, H_2); 3.42 (dd, H_2$ 1H, H₃); 7.21-7.25 (m, 3H, ar); 7.30-7.35 (m, 4H, ar); 7.42-7.46 (m, 1H, ar); 7.50–7.55 (m, 2H, ar). ¹³C NMR (100 MHz, CDCl₃ δ): 32.4; 39.3; 40.1; 42.0; 46.4; 48.3; 48.8; 117.5; 126.2; 126.6; 127.1; 128.5; 128.8; 129.3; 131.7; 144.2; 177.1; 177.2. GC-MS (EI, 70 eV): 317 (M⁺); 175; 129; 119; 104; 77. Compound (7b): Colorless crystals, mp 91 °C (51% from hexane/ethyl acetate (3:1)), ¹H NMR (400 MHz, CDCl₃ δ): 1.68–1.72 (d, J = 14.4 Hz, 1H, H_{7a}); 1.95–2.05 (m, 2H, H_{7s}) and H_{6x}); 2.09–2.15 (m, 1H, H_{6n}); 3.02 (2H, br s, 2H, H_1 and H_4); 3.24-3.28 (dd, J = 5.38; 8.56 Hz, 1H, H₂); 3.31-3.35 (m, 1H, H_{5n}); 3.37-3.41 (dd, J = 5.50; 9.90 Hz, 1H, H₃); 6.84-6.85 (dt, J = 2.20; 4.52 Hz, 1H, ar); 6.94–6.96 (dd, J = 3.55; 5.13 Hz, 1H, ar); 7.17–7.18 (dd, J = 1.1; 5.13 Hz, 1H, ar); 7.29–7.32 (m, 2H, ar); 7.41–7.46 (m, 1H, ar); 7.49–7.54 (m, 2H, ar). ¹³C NMR (100 MHz, CDCl₃ δ): 34.9; 38.1; 39.7; 39.8; 47.7; 48.0; 48.4; 123.5; 123.6; 126.6; 126.8; 128.8; 129.3; 131.7; 149.1; 176.8; 176.9. MS (EI, 70 eV): 324 (M⁺); 323; 175; 147; 119; 77. Compound (7c): Colorless crystals, mp 174-5 °C (63% from hexane/ethyl acetate (2:1)), ¹H NMR (400 MHz, CDCl₃ δ): $1.69-1.80 (m, 2H, H_{7a} and H_{7s}); 2.00-2.04 (dt, J = 1.46; 11.98 Hz, 1H,$ H_{6x}); 2.23–2.29 (ddd, J = 2.56; 9.17; 11.61 Hz, 1H, H_{6n}); 3.00–3.03 (br s, 1H, H₄); 3.13–3.15 (br d, *J* = 6.23 Hz, 1H, H₁); 3.32–3.38 (m, 2H, H₂ and H₃); 3.41-3.45 (dd, J = 5.26; 9.65 Hz, 1H, H_{5n}); 7.15-7.20 (m, 1H, ar); 7.23-7.30 (m, 1H, ar); 7.33-7.47 (m, 4H, ar); 7.50-7.55 (m, 2H, ar). ¹³C NMR (100 MHz, CDCl₃ δ): 34.3; 39.8; 40.5; 40.6; 44.4; 48.7; 49.2; 126.5; 127.1; 127.3; 127.9; 129.3; 129.8; 130.4; 132.3; 134.9; 142.4; 177.3; 177.5. MS (EI, 70 eV): 352 (M⁺), 351; 175; 147; 119; 77. Compound (7d): Colorless crystals, mp 167-8 °C (62% from hexane/ ethyl acetate (2:1)). ¹H NMR (400 MHz, CDCl₃ δ): 1.64–1.67 (d, J = 14.3 Hz, 1H, H_{7a}); 1.88–1.91 (dt, J = 1.46; 12.10 Hz, 1H, H_{7s}); $1.92-2.05 \text{ (m, 2H, H}_{6n} \text{ and H}_{6x}\text{)}; 2.95-2.97 \text{ (br d, } J = 6.4 \text{ Hz}, 1\text{H}, \text{H}_1\text{)};$ 3.00-3.05 (m, 2H, H₂ and H₄); 3.31-3.35 (m, 1H, H₃); 3.38-3.42 (dd, J = 5.26; 9.65 Hz, 1H, H_{5n}); 7.14–7.18 (m, 2H, ar); 7.27–7.33 (m, 4H, ar); 7.42–7.46 (m, 1H, ar); 7.49–7.54 (m, 2H, ar). ¹³C NMR (100 MHz, CDCl₃ *δ*): 32.5; 39.2; 40.1; 41.5; 46.3; 48.1; 48.7; 126.6; 128.4; 128.5; 128.8; 129.3; 131.7; 132.0; 142.6; 177.0; 177.1. MS (EI, 70 eV): 353 (M⁺), 351; 175; 147; 119; 77.
- 18. Compound (**9a**): Colorless crystals, mp 148 °C (70% from hexane/ ethyl acetate (3:1)), ¹H NMR (200 MHz, CDCl₃ δ): 1.96–1.99 (m, 1H, H_{6n}); 2.01–2.03 (dd, J = 8.96; 11.86 Hz, 1H, H_{6x}); 3.05–3.09 (dd, J = 5.06; 8.84 Hz, 1H, H_{5n}); 3.14–3.18 (d, J = 7.20 Hz, 1H,

H₂); 3.20–3.23 (d, J = 7.20, 1H, H₃); 4.91 (s, 1H, H₄); 5.13–5.16 (d, J = 5.30 Hz, 1H, H₁); 7.24–7.25 (m, 2H, ar); 7.26–7.47 (m, 8H, ar). ¹³C NMR (50 MHz, CDCl₃ δ): 40.0; 47.4; 49.8; 50.2; 79.6; 85.2; 12.5-127.1; 128.7; 129.2; 131.7; 133.1; 143.9; 176.2; 175.9. GC-MS (EI, 70 eV): 319 (M⁺); 290; 174; 128; 117; 91. Compound (9b): Colorless crystals, mp 174.6 °C (40% from hexane/ethyl acetate (3:1)), ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3 \delta)$: 2.09–2.16 (m, 1H, H_{6n}); 2.31–2.36 (dd, J = 8.80; 12.83 Hz, 1H, H_{6x}); 3.16–3.18 (d, J = 7.09 Hz; 1H, H_2); 3.23–3.25 (d, *J* = 7.09 Hz; 1H, H₃); 3.47–3.50 (dd, *J* = 4.52; 8.92 Hz, 1H, H_{5n}); 4.95 (s, 1H, H₁); 5.18–5.19 (d, J = 5.38 Hz, 1H, H₄); 6.92–6.98 (m, 1H, thienyl); 6.96–6.98 (dd, J = 3.55; 5.14 Hz, 1H, thienyl); 7.20–7.22 (dd, J = 0.89; 5.13 Hz, 1H, thienyl); 7.29–7.32 (m, 2H, Ph); 7.42–7.53 (m, 3H, Ph). ¹³C NMR (100 MHz, CDCl₃ δ): 40.9; 43.4; 49.9; 49.9; 79.9; 85.8; 124.4-126.9; 127.2; 129.3; 129.7; 132.1; 147.4; 176.2; 176.4. GC-MS (EI, 70 eV): 325 (M⁺); 297; 175; 160; 149; 77. Compound (9c): Colorless crystals, mp 189 °C (41% from hexane/ethyl acetate (3:1)). ¹H NMR (400 MHz, CDCl₃ δ): 1.96–2.02 (m, 1H, H_{6n}); 2.31–2.36 (dd, J = 9.05; 12.96 Hz, 1H, H_{6x}); 3.08–3.12 (dd, J = 4.89; 9.05 Hz, 1H, H_{5n}); 3.18–3.20 (d, J = 7.09 Hz, 1H, H_2); 3.23–3.25 (d, J = 7.09 Hz, 1H, H₃); 4.91 (s, 1H, H₄); 5.17–5.18 (d, J = 5.25 Hz, 1H, H₁); 7.26–7.23 (m, 2H, ar); 7.29–7.32 (m, 4H, ar); 7.53–7.42 (m, 3H, aromatic). ¹³C NMR (100 MHz, CDCl₃ δ): 40.6; 47.2; 50.1; 50.5; 79.9; 85.5; 126.9–128.9; 129.2; 129.3; 129.7; 132.0; 133.1; 142.9; 176.2; 176.5. GC-MS (EI, 70 eV): 354 $(M+1^+)$; 325; 175; 139; 103. Compound (9d): Colorless crystals, mp 179 °C (45% from hexane/ ethyl acetate (3:1)). ¹H NMR (400 MHz, CDCl₃ δ): 1.92–1.98 (m, 1H, H_{6n} ;2.38–2.40 (dd, J = 9.05; 12.84 Hz, 1H, H_{6x}); 3.24–3.26 (d, J = 7.09 Hz, 1H, H₂); 3.30–3.32 (d, J = 7.09 Hz, 1H, H₃); 3.66–3.70 $(dd, J = 0.01; 8.92 Hz, 1H, H_{5n}); 5.06 (s, 1H, H_4); 5.18-5.19 (d, J)$ J = 5.38 Hz, 1H, H₁); 7.19–7.23 (m, 1H, ar); 7.27–7.33 (m, 3H, ar); 7.39–7.54 (m, 5H, ar). ¹³C NMR (100 MHz, CDCl₃ δ): 39.6; 43.4; 50.2; 50.5; 80.1; 85.5; 126.3-127.9-128.4; 129.6-129.7; 132.1; 133.6; 141.5; 176.2; 176.5. GC-MS (EI, 70 eV): 353 (M⁺); 325; 175; 191; 102. Compound (9e): Colorless crystals, mp 170.2 °C (56% from hexane/ ethyl acetate (3:1)), ¹H NMR (400 MHz, CDCl₃ δ): 1.85–1.91 (m, 1H, H_{6n}); 2.36–2.41 (dd, J = 9.05; 12.96 Hz, 1H, H_{6x}); 3.21–3.23 (d, J = 7.09 Hz, 1H, H₂); 3.27–3.29 (d, J = 7.09 Hz, 1H, H₃); 3.59–3.63 $(dd, J = 4.89; 9.05 Hz, 1H, H_{5n}); 5.00 (s, 1H, H_4); 5.16-5.17 (d, 10.10)$ J = 5.25 Hz, 1H, H₁); 7.26–7.28 (dd, J = 2.20; 8.56 Hz, 1H, ar); 7.30– 7.32 (m, 2H, ar); 7.42-7.43 (m, 2H, ar); 7.45-7.46 (m, 1H, ar); 7.49-7.54 (m, 2H, ar). ¹³C NMR (100 MHz, CDCl₃ δ): 39.6; 43.0; 50.1; 50.4; 80.1; 84.4; 126.9-128.2-128.9; 129.3; 129.5; 129.5; 132.1; 133.4; 134.2-140.2; 176.1; 176.1. GC-MS (EI, 70 eV): 388 (M⁺); 325; 175; 191; 103. Compound (9f): Colorless crystals, mp 152 °C (97% from hexane/ethyl acetate (3:1)), ¹H NMR (200 MHz, CDCl₃ δ): 1.89–1.96 $(m, 1H, H_{6n})$; 2.30–2.40 (dd, J = 10.00; 13.00 Hz, 1H, H_{6x}); 3.08–3.11 $(dd, J = 5.02; 9.11 Hz, 1H, H_{5n}); 3.17-3.20 (d, J = 7.08, 1H, H_2);$ 3.22-3.25 (d, J = 7.09 Hz, 1H, H₃); 4.87 (s, 1H, H₄); 5.16-5.19 (d, J = 5.30 Hz, 1H, H₁); 7.26–7.48 (m, 6H, ar); 7.61–7.66 (dd, J = 2.52; 8.34 Hz, 1H, ar); 8.27–8.28 (d, J = 2.26 Hz, 1H, ar). ¹³C NMR (50 MHz, CDCl₃ δ): 40.1; 44.1; 49.6; 49.8; 79.5; 84.8; 126.4; 128.9-129.2; 131.3; 131.5; 138.4; 150.2; 175.4; 175.7. GC-MS (EI, 70 eV): 354 (M⁺); 325; 139; 119; 117; 91; 68.

- de Costa, B. R.; He, X. S.; Linders, J. T.; Dominguez, C.; Gu, Z. Q.; Williams, W.; Bowen, W. D. J. Med. Chem. 1993, 36, 2311–2320.
- Ciganek, E. U.S. Patent 5,216,018, Du Pont Merck Pharmaceutical Company, 1993; *Chem. Abstr.* 1993, *119*, 225816.
- Gilligan, P. J. U.S. Patent 5532243, Du Pont Merck Pharmaceutical Company, 1996; *Chem. Abstr.* 1994, 120, 134304.

- Rice, L. M.; Grogan, C. H.; Reid, E. E. J. Am. Chem. Soc. 1953, 75, 4911–4915.
- 23. Otzenberger, R. D.; Lipkowitz, K. B.; Mundy, B. P. J. Org. Chem. 1974, 39, 319–321.
- 24. Compound (12a): Yellow oil, (60% from hexane/ethyl acetate (2:1)), ¹H NMR (400 MHz, CDCl₃ δ): 1.57–1.60 (m, 2H, H_{10a} and H_{10b}); 1.83-1.86 (d, J = 9.90 Hz, 1H, H_{9x}); 2.09-2.15 (dt, J = 2.44; 12.16 Hz, 1H, H_{9n} ; 2.44 (br s, 1H, H_1); 2.51–2.52 (br d, J = 4.52 Hz, 1H, H_7); 2.72–2.86 (m, 2H, H₂ and H₆); 2.95–3.03 (AB, *J* = 8.31 Hz, 2H, H₅); 3.07–3.11 (dd, J = 5.13; 8.80 Hz, 1H, H_{8n}); 3.57–3.60 (d, J = 11.6 Hz, 1H, H₃); 3.66–3.69 (d, J = 10 Hz, 1H, H₃); 6.76–6.80 (m, 3H, ar); 7.15–7.18 (m, 1H, ar); 7.22–7.24 (m, 2H, ar); 7.28–7.32 (m, 4H, ar). ¹³C NMR (100 MHz, CDCl₃ δ): 32.2; 39.6; 40.3; 42.4; 43.2; 44.5; 47.9; 49.5; 49.6; 113.9; 117.1; 125.7; 127.6; 128.6; 129.5; 147.7; 149.2. MS (EI, 70 eV): 289 (M⁺); 144; 106; 77. Compound (12b): Yellow oil, (50% from hexane/ethyl acetate (2:1)), ¹H NMR (400 MHz, CDCl₃) δ): 1.43–1.47 (m, 2H, H_{10a} and H_{10b}); 1.71–1.75 (d, J = 10.00 Hz, 1H, H_{9x}); 2.04–2.13 (dt, J = 2.46; 12.15 Hz, 1H, H_{9n}); 2.35 (br s, 1H, H_1); 2.43–2.45 (br d, *J* = 4.53 Hz, 1H, H₇); 2.64–2.83 (m, 2H, H₂ and H₆); 3.12–3.17 (AB, J = 8.48 Hz, 2H, H₅); 3.37–3.41 (dd, J = 5.22; 9.57 1H, H_{8n}); 3.74–3.78 (d, J = 11.6 Hz, 1H, H_3); 3.97–4.00 (d, J = 8.93 Hz, 1H, H₃); 6.69 (m, 1H, ar); 6.75–6.76 (d, J = 3.44 Hz, 1H, ar); 6.83-6.92 (m, 1H, ar); 7.05-7.11 (m, 2H, ar); 7.14-7.28 (m, 3H, ar). ¹³C NMR (100 MHz, CDCl₃ δ): 30.1; 34.2; 36.2; 40.6; 42.1; 42.9; 44.2; 47.2; 48.6; 114.0; 117.6; 122.5; 122.6; 126.5; 127.6; 129.2; 130.4; 148.7; 152.5. MS (EI, 70 eV): 295 (M⁺); 211; 179; 165; 149; 110; 83. Compound (12c): Yellow oil, (50% from hexane/ethyl acetate (2:1)), ¹H NMR (250 MHz, CDCl₃ δ): 1.45–1.53 (m, 2H, H_{10a} and H_{10b}), 1.72–1.75 (d, J = 9.45 Hz, 1H, H_{9x}), 2.02–2.10 (m, 1H, H_{9n}), 2.30 (br s, 1H, H₁), 2.35–2.42 (m, 1H, H₇), 2.65–2.79 (m, 2H, H₂ and H₆), 2.87–2.91 (AB, J = 10 Hz, 2H, H₅), 2.95–3.02 (dd, J = 5.10; 8.68 Hz, 1H, H_{8n}), 3.50–3.53 (d, J = 11.5 Hz, 1H, H_3), 3.57–3.60 (d, J = 11.6 Hz, 1H, H₃), 6.68–6.74 (m, 3H, ar), 7.05–7.10 (d, J = 12.50 Hz, 2H, ar), 7.15–7.25 (m, 4H, ar). ¹³C NMR (62.5 MHz, $CDCl_3 \delta$): 30.2; 31.7; 38.8; 39.7; 41.8; 42.6; 43.9; 48.9; 49.1; 113.3; 116.6; 125.2; 127.8; 128.1; 128.2; 128.8; 145.3; 148.4. MS (EI, 70 eV): 323 (M⁺); 289; 213; 172; 136; 96; 77.
- 25. Compound (14a). Colorless crystals, mp 142 °C (47% from hexane/ ethyl acetate (1:2)), ¹H NMR (400 MHz, CDCl₃ δ): 1.68–1.73 (m, 1H, H_{9n}); 1.99–2.03 (dd, J = 9.27; 12.69 Hz, 1H, H_{9x}); 2.62–2.64 (m, 2H, H₂ and H₃); 2.80–2.83 (m, 1H, H_{8n}); 2.87–2.90 (AB, J = 4.88 Hz, 2H, H₅); 3.55–3.64 (td, J = 10.74; 18.06 Hz, 2H, H₃); 4.22 (s, 1H, H₁); 4.43–4.45 (d, J = 4.50 Hz, 1H, H₇); 6.52–6.55 (dd, J = 7.82; 8.78 Hz, 2H, ar); 6.62-6.64 (m, 1H, ar); 7.10-7.11 (m, 2H, ar); 7.12-7.13 (m, 2H, ar); 7.18–7.19 (m, 2H, ar); 7.21–7.22 (m, 1H, ar). ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3 \delta)$: 40.5; 47.5; 48.1; 48.7; 53.1; 54.0; 81.1; 87.2; 113.3-117.2; 126.5; 127.5-128.7; 129.3-129.6; 130.2; 131.7-132.4; 146.3; 148.6. GC-MS (EI, 70 eV): 291 (M⁺); 172; 144; 91; 77. Compound (14b). Colorless crystals, mp 149 °C (37% from hexane/ ethyl acetate (1:2)), ¹H NMR (400 MHz, CDCl₃ δ): 1.80–1.82 (m, 1H, H_{9n}); 2.02–2.04 (dd, J = 8.78; 13.05 Hz, 1H, H_{9x}); 2.59–2.65 (td, J = 5.85; 8.30 Hz, 2H, H₂ and H₆); 2.84–2.89 (m, 2H, H₃); 3.18–3.21 $(dd, J = 5.05; 9.12 Hz, 1H, H_{8n}); 3.59-3.64 (td, J = 3.06; 7.20 Hz, 2H,$ H₅); 4.25 (s, 1H, H₁); 4.46–4.47 (d, J = 5.37 Hz, 1H, H₇); 6.51–6.55 (dd, J = 7.85; 8.82 Hz, 2H, ar); 6.63–6.64 (m, 2H, ar); 6.67–6.78 (m, 1H, ar); 6.81–6.82 (m, 2H, ar); 7.03–7.05 (m, 1H, ar). ¹³C NMR (100 MHz, CDCl₃ δ): 40.9; 43.0; 47.9; 48.0; 53.8; 54.0; 80.9; 87.5; 113.8; 117.2; 123.4-123.7; 126.7; 128.4-128.0; 129.2-129.0; 148.5; 149.5. GC-MS (EI, 70 eV): 297 (M⁺); 184; 144; 83; 77.